

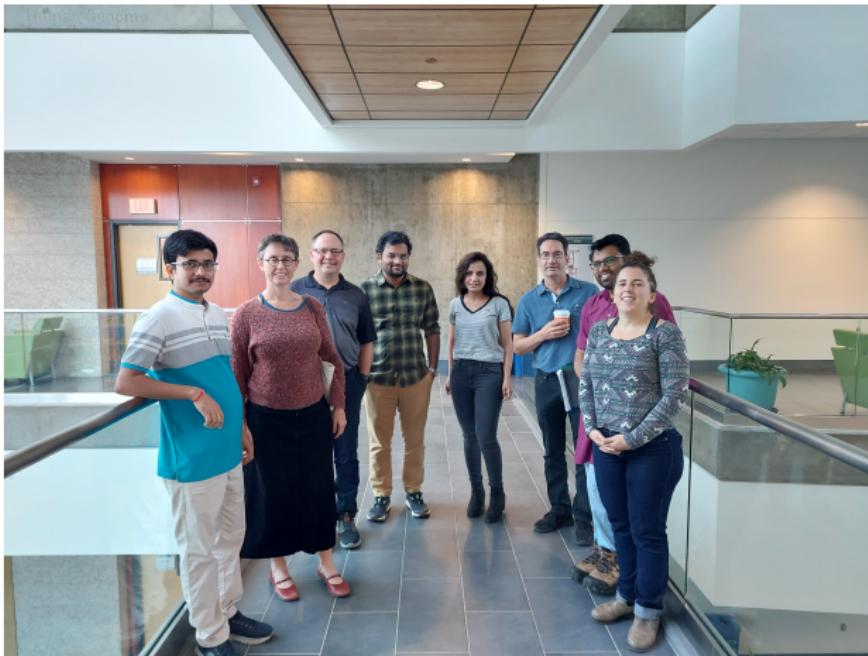
On the second largest eigenvalue of certain graphs in the perfect matching association scheme

Alice Lacaze-Masmonteil
University of Regina

Joint work with Himanshu Gupta, Allen Herman, Roghayeh
(Mitra) Maleki, and Karen Meagher

December 7th, 2025

Discrete Mathematics Research Group at the University of Regina



The spectrum of a graph

Definition

The **spectrum** of a graph G on n vertices is the spectrum of its adjacency matrix: $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$.

Definition

The **spectral gap** of a graph G is defined as $\lambda_1 - \lambda_2$.

Motivation

The spectral gap of a k -regular graph is also known as its algebraic connectivity and corresponds to the smallest non-zero eigenvalue of the Laplacian matrix.

- Graphs with small spectral graphs tend to have large diameter.
- A large spectral gap implies stronger expansion properties and faster mixing of random walks on the graph.

Association schemes

Definition

Given a set of v points, a set $\mathcal{A} = \{A_0, A_1, \dots, A_t\}$ of $v \times v$ binary matrices is an **association scheme** if:

- $A_0 = I_v$ (the identity matrix);
- $\sum_{i=0}^t A_i = J$ (J is the all-one matrix);
- $A^T \in \mathcal{A}$; (A^T is the transpose)
- $A_i A_j = c_0 A_0 + c_1 A_1 + \dots + c_t A_t$, where $c_i \in \mathbb{C}$;
- $A_i A_j = A_j A_i$ (matrices commute).

The indices of the scheme are known as the **relations** or **associates** of the scheme. An association scheme is **symmetric**, if $A_i = A_i^T$ for all relations.

Perfect matching

Definition

A **perfect matching** in a graph G is a matching that covers every vertex of G .

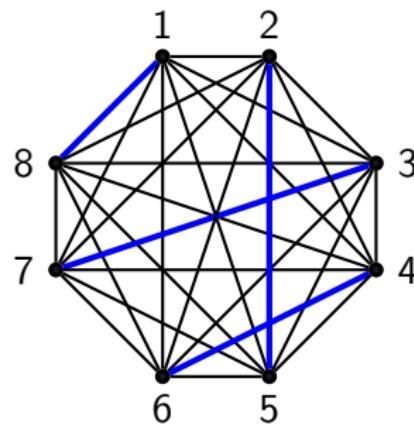


Figure: A perfect matching of K_8 (in blue).

Perfect matchings of K_{2n}

Definition

Let $M(K_{2n})$ denote the set of all perfect matchings of K_{2n} . An elementary counting argument will show that:

$$|M(K_{2n})| = (2n-1)(2n-3) \cdots (3)(1) = (2n-1)!!$$

Main goal: To construct the perfect matching association scheme in relation to $M(K_{2n})$.

Relation between two perfect matchings

We define a relation between two perfect matchings in $M(K_{2n})$.

Example: We overlap two perfect matchings of K_8 .

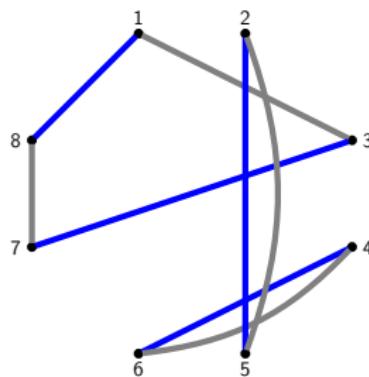


Figure: Two perfect matchings of $M(K_8)$ in grey and blue.

Relation between two perfect matchings

We define a relation between two perfect matchings in $M(K_{2n})$.

Example: This gives rise to a set of cycles of **even** lengths.

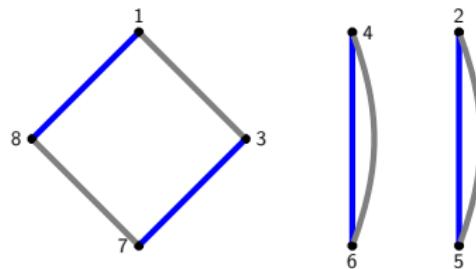


Figure: The union of these two matchings gives us 3 cycles of length 4,2, and 2 respectively.

Relation between two perfect matchings

Notation

Let $\mu \vdash n$ be a partition of n such that $\mu = [\mu_1, \mu_2, \dots, \mu_t]$. We write $2\mu = [2\mu_1, 2\mu_2, \dots, 2\mu_t]$ where $2\mu \vdash 2n$.

Observation: There exists a bijection between the set of all partitions of n and the set of even partitions of $2n$.

Note: We use exponential notation to be concise. This means that

$$2\mu = [4, 2, 2] = [4, 2^2].$$

Building our graphs

Definition

Let P and Q be two perfect matchings in $M(K_{2n})$ and $\mu = [\mu_1, \mu_2, \dots, \mu_t]$ is a partition of n . We say that P and Q are μ -related if $P \cup Q = C_{2\mu_1} \cup C_{2\mu_2} \cup \dots \cup C_{2\mu_t}$.

Example:

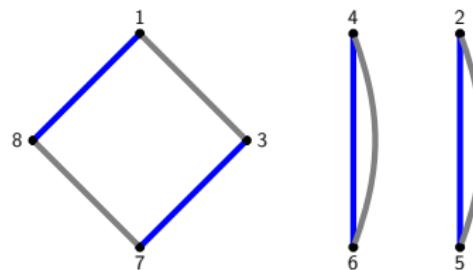


Figure: Our blue and grey perfect matching are $[2, 1^2]$ -related.

Perfect matching association schemes

Definition

Let $\mu \vdash n$. The graph X_μ has vertex set $M(K_{2n})$. Two vertices of X_μ are adjacent if the union of the two corresponding matchings has cycle-type 2μ .

Definition

Let A_μ be the adjacency matrix of X_μ . The set

$$\mathcal{A}_{2n} = \{A_{[1^n]}, A_{[2,1^{n-2}]}, A_{[2,2,1^{n-4}]}, \dots, A_{[n]}\}$$

is known as the perfect matching association scheme.

On the spectral gap

Problem

What is the second largest eigenvalue of each graph in the perfect matching association scheme?

Observation: The set $\mathcal{A}_{2n} = \{A_{[1^n]}, A_{[2,1^{n-2}]}, A_{[2,2,1^{n-4}]}, \dots, A_{[n]}\}$ is a set of symmetric matrices that pairwise commute.

Fact: A set of symmetric matrices that pairwise commute have the same eigenspaces.

Perfect matching association scheme

- Let H_n be the subgroup of S_{2n} that is the stabilizer of a single perfect matching ($H_n = S_2 \wr S_n$):

$$|H_n| = 2^n \cdot (n!) \rightarrow [S_{2n} : H_n] = (2n-1)!!.$$

- We have a bijection between cosets of H_n and $M(K_{2n})$.
- S_{2n} acts on the set of cosets via right multiplication.
- The permutation matrices arising from this action is the induced representation $1 \uparrow_{H_n}^{S_{2n}}$:

$$1 \uparrow_{H_n}^{S_{2n}} = \bigoplus_{\lambda \vdash n} S^{2\lambda}.$$

Perfect matching association scheme

- The group S_{2n} acts on the set of pairs of cosets of $H_n = S_2 \wr S_n$.
- The orbits of this action are called orbitals.
- Two pairs of cosets are in the same orbit if the corresponding pairs of perfect matching have the same cycle structure μ .
- If each pair of cosets represent the edge of a graph, then the binary matrix arising from the orbital indexed by μ is A_μ .

Eigenspaces

- Matrices in \mathcal{A}_{2n} commute with the permutation matrices in $1 \uparrow_{H_n}^{S_{2n}}$.
- The eigenspaces of our matrices correspond to irreducible representations of the symmetric group S_{2n} that appear in the decomposition of $1 \uparrow_{H_n}^{S_{2n}}$.

Each eigenspace is indexed by an even partition of $2n$.

Eigenspaces

Eigenspaces \ matrices	$A_{[1^n]}$	$A_{[2, 1^{n-2}]}$	$A_{[3, 2, 1^{n-5}]}$	\dots	$A_{[n]}$
$[2n]$					
$[2n - 2, 2]$					
$[2n - 4, 4]$					
\vdots					
$[2^n]$					

Eigenvalues

Question: Given a S_{2n} -module corresponding to λ , what is the eigenvalue of A_μ corresponding to this eigenspace?

Eigenspaces \ matrices	$A_{[1^n]}$	$A_{[2, 1^{n-2}]}$	$A_{[3, 2, 1^{n-5}]}$...	$A_{[n]}$
$[2n]$?	?	?		?
$[2n - 2, 2]$?	?	?		?
$[2n - 4, 4]$?	?	?		?
\vdots	?	?	?		?
$[2^n]$?	?	?		?

Notation: Let ϕ_μ^λ be the eigenvalue of the λ -eigenspace of A_μ .

Eigenvalues

Eigenspaces \ matrices	$A_{[1^n]}$	$A_{[2, 1^{n-2}]}$	$A_{[3, 2, 1^{n-5}]}$	\dots	$A_{[n]}$
$[2n]$	1	?	?		?
$[2n - 2, 2]$	1	?	?		?
$[2n - 4, 4]$	1	?	?		?
\vdots	1	?	?		?
$[2^n]$	1	?	?		?

Eigenvalues

Eigenspaces \ matrices	$A_{[1^n]}$	$A_{[2, 1^{n-2}]}$	$A_{[3, 2, 1^{n-5}]}$...	$A_{[n]}$
$[2n]$	1	✓	✓	✓	✓
$[2n - 2, 2]$	1	?	?		?
$[2n - 4, 4]$	1	?	?		?
⋮	1	?	?		?
$[2^n]$	1	?	?		?

The eigenvalues of the $[2n]$ -eigenspace corresponds to the degree of each graph (each graph is regular).

Eigenvalues

Eigenspaces \ matrices	$A_{[1^n]}$	$A_{[2, 1^{n-2}]}$	$A_{[3, 2, 1^{n-5}]}$...	$A_{[n]}$
$[2n]$	1	✓	✓	✓	✓
$[2n - 2, 2]$	1	✓	✓	✓	✓
$[2n - 4, 4]$	1	?	?		?
⋮	1	?	?		?
$[2^n]$	1	?	?		?

MacDonald (1979) gives formulas for the eigenvalues corresponding to the $[2n - 2, 2]$ -eigenspace.

Eigenvalues

Eigenspaces \ matrices	$A_{[1^n]}$	$A_{[2,1^{n-2}]}$	$A_{[3,2,1^{n-5}]}$...	$A_{[n]}$
$[2n]$	1	✓	✓	✓	✓
$[2n-2, 2]$	1	✓	✓	✓	✓
$[2n-4, 4]$	1	✓	?		?
⋮	1	✓	?		?
$[2^n]$	1	✓	?		?

Diaconis and Holmes (2002) determine all eigenvalues of $A_{[4,2,2,\dots,2]}$.

Eigenvalues

Eigenspaces \ matrices	$A_{[1^n]}$	$A_{[2, 1^{n-2}]}$	$A_{[3, 2, 1^{n-5}]}$...	$A_{[n]}$
$[2n]$	1	✓	✓	✓	✓
$[2n - 2, 2]$	1	✓	✓	✓	✓
$[2n - 4, 4]$	1	✓	?		✓
⋮	1	✓	?		✓
$[2^n]$	1	✓	?		✓

MacDonald (1979) provides a formula for computing eigenvalues of $A_{[2n]}$.

Obvious approach

An obvious approach is to construct an eigenvector w from the λ -eigenspace and evaluate $A_\mu w$.

Lemma (Godsil and Meagher, 2015)

Let $H_n = S_2 \wr S_n$ and $x_\lambda \in S_{2n}$ such that $(H_n, x_\lambda H_n)$ is a pair of cosets in the λ -orbital of H_n . Then

$$\phi_\mu^\lambda = \frac{v_\mu}{2^n(n!)} \sum_{h \in H_n} \chi^\lambda(x_\mu h).$$

This approach involves evaluating a sum of irreducible characters in a coset of H_n .

Small cases

$[1^4]$	$[2, 1^2]$	$[2^2]$	$[3, 1]$	$[4]$	Rep.	Dim.
1	12	12	32	48	$[8]$	1
1	5	-2	4	-8	$[6, 2]$	20
1	2	7	-8	-2	$[4^2]$	14
1	-1	-2	-2	4	$[4, 2^2]$	56
1	-6	3	8	-6	$[2^4]$	14

Table: Eigenvalues of \mathcal{A}_8

By implementing Srinivasan's Maple code in Sage, we can obtain all eigenvalues of the perfect matching association scheme for $n \leq 15$.

Conjecture

Problem

On which eigenspace does the second largest eigenvalue occurs?

It is well-known that the largest eigenvalue occurs on the $[2n]$ -eigenspace for each A_μ and that this eigenvalue is the degree of A_μ .

Conjecture

If μ contains at least two parts of length 1, then the second largest eigenvalue of A_μ occurs on the $[2n - 2, 2]$ -eigenspace.

Conjecture

Eigenspaces \ matrices	$A_{[1^n]}$	$A_{[2,1^{n-2}]}$	$A_{[3,1^{n-3}]}$	\cdots	$A_{[n]}$
$[2n]$	1	✓	✓	✓	✓
$[2n-2, 2]$	1				
$[2n-4, 2, 2]$	1	✓			✓
\vdots	1	✓			✓
$[2^n]$	1	✓			✓

Using a computer, we can verify this conjecture for $2n \leq 30$.

Conjecture

Conjecture

If μ contains at least two parts of length 1, then the second largest eigenvalue of X_μ occurs on the $[2n - 2, 2]$ -eigenspace.

Why do we require that μ contains at least two parts of length 1?

If μ has no parts of size one (μ is a derangement), then $\phi_\mu^{[2n-2,2]}$ is negative. (MacDonald, 1979)

Relations with one part of size one

$[1^5]$	$[2,1^3]$	$[2^2,1]$	$[3,1^2]$	$[3,2]$	$[4,1]$	$[5]$	Space	Dim.
1	20	60	80	160	240	384	$[10]$	1
1	11	6	26	-20	24	-48	$[8,2]$	35
1	6	11	-4	20	-26	-8	$[6,4]$	90
1	3	-10	2	-4	-8	16	$[6,2^2]$	225
1	0	5	-10	-10	10	4	$[4^2,2]$	252
1	-4	-3	2	10	6	-12	$[4,2^3]$	300
1	-10	15	20	-20	-30	24	$[2^5]$	42

Table: Eigenvalues of \mathcal{A}_{10}

Results

Theorem (GHLMM (2025+))

Let $\mu = [n - k, \mu']$ with $\mu' \vdash k$. If n is sufficiently large relative to k , then $\phi_{\mu}^{[2n-2,2]}$ is the second largest eigenvalue of X_{μ} in absolute value.

Theorem (GHLMM (2025+))

If

$$\mu \in \{[2, 1^{n-2}], [3, 1^{n-3}], [2^2, 1^{n-4}], [4, 1^{n-4}], [3, 2, 1^{n-5}], [5, 1^{n-5}]\}$$

then $\phi_{\mu}^{[2n-2,2]}$ is the second largest eigenvalue of X_{μ} in absolute value.

An inductive algorithm

- Srinivasan (2020) derived an inductive algorithm that allows us to obtain closed form formulas for the spectrum of X_μ based on content-evaluating symmetric functions.

An inductive algorithm

- Srinivasan (2020) derived an inductive algorithm that allows us to obtain closed form formulas for the spectrum of X_μ based on content-evaluating symmetric functions.
- Namely, Srinivasan shows that elements of the algebra of symmetric functions in $2n$ variables over $\mathbb{Q}[t]$ can be used to obtain closed-form formulae for the spectrum of X_μ .

Example

Example: Let $\phi_{[3,1^{n-2}]}^\lambda$ be the eigenvalue of $X_{[3,1^{n-2}]}$ occurring on the λ -eigenspace and let

$$p_1(x_1, x_2, \dots, x_{2n}) = \sum_{i=1}^{2n} x_i; \quad p_2(x_1, x_2, \dots, x_{2n}) = \sum_{i=1}^{2n} x_i^2.$$

Generating content

Let λ be an even partition of $2n$ that indexes an eigenspace.

How do we generate the content of the Young tableau associated with λ , denoted $c(\lambda)$?

x_1	x_2	x_3	x_4	x_5	x_6
x_7	x_8	x_9	x_{10}		
x_{11}	x_{12}				

0	1	2	3	4	5
-1	0	1	2		
-2	-1				

(a) Assignment of $2n$ variables to the boxes of a Young tableau for $n = 6$.

(b) Content of Young tableau corresponding to the partition $[6, 4, 2]$.

$$p_1(c(\lambda)) = \sum_{i=1}^{2n} x_i = 9; \quad p_2(c(\lambda)) = \sum_{i=1}^{2n} x_i^2 = 66.$$

Formula for spectrum

How do we piece together these symmetric functions to compute the spectrum of $X_{[3,1^{n-1}]}$?

$$\phi_{[3,1^{n-2}]}^{\lambda} = \frac{p_2(c(\lambda))}{2} - p_1(c(\lambda)) + \frac{3n - n^2}{4}$$

and thus

$$\phi_{[3,1^{n-2}]}^{[6,4,2]} = \frac{66}{2} - 9 + \frac{3(3) - (3)^2}{4} = 24.$$

Application to second largest eigenvalue

How can we use these formulae to show that $\phi_{[3,1^{n-1}]}^{[2n-2,2]}$ is the second largest eigenvalue?

- Every even partition of $(2n + 2)$ can be obtained from an even partition of $2n$, λ , by adding two boxes to a row of the Young tableau.

Application to second largest eigenvalue

How can we use these formulae to show that $\phi_\mu^{[2n-2,2]}$ is the second largest eigenvalue?

- Every even partition of $(2n + 2)$ can be obtained from an even partition of $2n$, λ , by adding two boxes to a row of the Young tableau.

0	1	2	3	4	5
-1	0	1	2		
-2	-1				
-3	-2				

(a) Young tableau for partition $2\lambda = 2[3, 2, 1^2]$ with its content.

0	1	2	3	4	5
-1	0	1	2		
-2	-1	0	1		
-3	-2				

(b) Young tableau for partition $2\lambda^+ = 2[3, 2^2, 1]$ with its content.

Induction

Induction hypothesis: We assume that $\phi_{[3,1^{n-1}]}^{[2n-2,2]}$ is the second largest for $2n$.

0	1	2	3	4	5	6	7	8	9	10
-1	0									

(a) Young tableau for partition
 $2\lambda = 2[5, 1]$ and $2n = 12$.

Induction

Induction step: We compute

$$\phi_{[3,1^n]}^{[2n,2]} - \phi_{[3,1^n]}^{[2n-2,2]} = 4n^2 - 12n + 6.$$

0	1	2	3	4	5	6	7	8	9	10
-1	0									

0	1	2	3	4	5	6	7	8	9	10	11	12
-1	0											

Figure: Illustrating change in content of Young tableaux.

Induction

Key step: Show that

$$\phi_{[3,1^{n-1}]}^{\lambda} - \phi_{[3,1^n]}^{\lambda^+} < 4n^2 - 12n + 6$$

when $\lambda \notin \{[2n], [2n-1]\}$.

Since the increase of each eigenvalue does not exceed the increase seen in $\phi_{[3,1^{n-1}]}^{[2n-2,2]}$, by the induction hypothesis, $\phi_{[3,1^n]}^{[2n,2]}$ must also be the second largest eigenvalue.

Other formulae

A_μ	E_μ
$A_{[2,1^{n-2}]}$	$\frac{p_1}{2} - \frac{t}{4}$
$A_{[3,1^{n-3}]}$	$\frac{p_2}{2} - p_1 + \frac{3t-t^2}{4}$
$A_{[2,2,1^{n-4}]}$	$\frac{p_1^2}{8} - \frac{3p_2}{4} + \frac{(10-t)p_1}{8} + \frac{9t^2-24t}{32}$
$A_{[4,1^{n-4}]}$	$\frac{p_3}{2} - \frac{9p_2}{4} + \frac{(11-2t)p_1}{2} + \frac{8t^2-23t}{8}$
$A_{[3,2,1^{n-5}]}$	$-2p_3 + \frac{1}{4}p_1p_2 + \left(\frac{60-t}{8}\right)p_2 - \frac{1}{2}p_1^2 + \frac{29t-120-t^2}{8}p_1 + \frac{116t-47t^2+t^3}{16}$
$A_{[5,1^{n-5}]}$	$\frac{p_4}{2} - 4p_3 + \frac{40-3t}{2}p_2 - p_1^2 + (7t-34)p_1 + \frac{217t-96t^2+5t^3}{12}$

Table: Formulae for the symmetric functions to compute eigenvalues of certain matrices in the perfect matching association scheme

Result

Theorem (GHLMM (2025+))

If

$$\mu \in \{[2, 1^{n-2}], [3, 1^{n-3}], [2^2, 1^{n-4}], [4, 1^{n-4}], [3, 2, 1^{n-5}], [5, 1^{n-5}]\}$$

then $\phi_\mu^{[2n-2,2]}$ is the second largest eigenvalue of X_μ .

Future work

- What are the diameters of the graphs in $\mathcal{A}(M_{2n})$?
- What is the chromatic number of graphs in $\mathcal{A}(M_{2n})$?
- Can our methods be further extended to confirm our conjecture on the second highest eigenvalue?

Thank you!

The 2026 Prairie Discrete Math Workshop:

- Set to take place on May 7th and 8th in Regina;
- Students and post-docs welcome! (Some travel funding may be available)